pacman::p_load(tidyverse,
margins,
prediction,
modelsummary,
summarytools,
gt)
pacman::p_load_gh("JaehyunSong/BalanceR")
df <- read_csv("data/replication_data_aiso_2022.csv")A Replication Code for “Fake News and its Electoral Consequences: A Survey Experiment on Mexico”
1 Text and Dataset
2 Setup
3 Estimation
# w/o covariates / no interaction
Fit1 <- lm(Regret ~ Group, data = df, weights = W)
# w/ covariates
Fit2 <- lm(Regret ~ Group + Female + Age + Educ + Income +
Ideology + PID1 + PID2 + PID3 + Knowledge + Voted +
ExtEffi + IntEffi + Trust_Media,
data = df, weights = W)
# w/ covariates / interaction with knowledge
Fit3 <- lm(Regret ~ Group * Knowledge + Female + Age + Educ + Income +
Ideology + PID1 + PID2 + PID3 + Knowledge + Voted +
Trust_Media + ExtEffi + IntEffi,
data = df, weights = W)
# w/ covariates / interaction with internal political efficacy
Fit4 <- lm(Regret ~ Group * IntEffi + Female + Age + Educ + Income +
Ideology + PID1 + PID2 + PID3 + Knowledge + Voted +
ExtEffi + IntEffi + Trust_Media,
data = df, weights = W)coef_vec <- c("GroupTreat1" = "Treatment 1",
"GroupTreat2" = "Treatment 2",
"Female" = "Female",
"Age" = "Age",
"Educ" = "Education",
"Income" = "Income",
"Ideology" = "Ideology",
"PID1" = "PID: Anaya Coalition",
"PID2" = "PID: Meade Coalition",
"PID3" = "PID: López Obrador Coalition",
"Knowledge" = "Knowledge",
"Voted" = "Voted",
"ExtEffi" = "External Efficacy",
"IntEffi" = "Internal Efficacy",
"Trust_Media" = "Trust in Media",
"GroupTreat1:Knowledge" = "Treatment 1 * Knowledge",
"GroupTreat2:Knowledge" = "Treatment 2 * Knowledge",
"GroupTreat1:IntEffi" = "Treatment1 * Internal Efficacy",
"GroupTreat2:IntEffi" = "Treatment2 * Internal Efficacy",
"(Intercept)" = "Constant")
modelsummary(list("Model 1<br/>No Covariates" = Fit1,
"Model 2<br/>With Covariates" = Fit2,
"Model 3<br/>Knowledge" = Fit3,
"Model 4<br/>Internal Political Efficacy" = Fit4),
escape = FALSE,
coef_map = coef_vec)| Model 1 No Covariates |
Model 2 With Covariates |
Model 3 Knowledge |
Model 4 Internal Political Efficacy |
|
|---|---|---|---|---|
| Treatment 1 | -0.021 | -0.016 | -0.006 | 0.267 |
| (0.035) | (0.033) | (0.054) | (0.116) | |
| Treatment 2 | -0.045 | -0.027 | 0.070 | 0.363 |
| (0.034) | (0.032) | (0.052) | (0.118) | |
| Female | 0.004 | 0.007 | 0.005 | |
| (0.027) | (0.027) | (0.026) | ||
| Age | -0.001 | -0.001 | -0.001 | |
| (0.001) | (0.001) | (0.001) | ||
| Education | 0.006 | 0.003 | 0.004 | |
| (0.014) | (0.014) | (0.014) | ||
| Income | 0.000 | 0.001 | 0.001 | |
| (0.003) | (0.003) | (0.003) | ||
| Ideology | 0.014 | 0.014 | 0.014 | |
| (0.006) | (0.006) | (0.006) | ||
| PID: Anaya Coalition | 0.240 | 0.231 | 0.235 | |
| (0.049) | (0.049) | (0.049) | ||
| PID: Meade Coalition | 0.122 | 0.116 | 0.117 | |
| (0.052) | (0.052) | (0.051) | ||
| PID: López Obrador Coalition | 0.031 | 0.026 | 0.032 | |
| (0.033) | (0.033) | (0.032) | ||
| Knowledge | 0.020 | 0.049 | 0.020 | |
| (0.014) | (0.022) | (0.014) | ||
| Voted | -0.391 | -0.391 | -0.397 | |
| (0.040) | (0.040) | (0.040) | ||
| External Efficacy | 0.001 | 0.001 | -0.002 | |
| (0.012) | (0.012) | (0.012) | ||
| Internal Efficacy | -0.015 | -0.016 | 0.047 | |
| (0.013) | (0.013) | (0.022) | ||
| Trust in Media | 0.022 | 0.022 | 0.022 | |
| (0.012) | (0.012) | (0.012) | ||
| Treatment 1 * Knowledge | -0.008 | |||
| (0.033) | ||||
| Treatment 2 * Knowledge | -0.073 | |||
| (0.031) | ||||
| Treatment1 * Internal Efficacy | -0.069 | |||
| (0.028) | ||||
| Treatment2 * Internal Efficacy | -0.095 | |||
| (0.028) | ||||
| Constant | 0.230 | 0.410 | 0.388 | 0.180 |
| (0.024) | (0.095) | (0.097) | (0.117) | |
| Num.Obs. | 822 | 822 | 822 | 822 |
| R2 | 0.002 | 0.168 | 0.175 | 0.181 |
| R2 Adj. | -0.000 | 0.153 | 0.157 | 0.163 |
| AIC | 888.7 | 765.1 | 762.7 | 756.8 |
| BIC | 907.5 | 845.2 | 852.2 | 846.3 |
| Log.Lik. | -440.342 | -365.569 | -362.332 | -359.386 |
| F | 0.857 | 10.856 | 10.005 | 10.417 |
| RMSE | 0.40 | 0.37 | 0.37 | 0.37 |
4 Figure 1
bind_rows(list("1" = prediction(Fit1,
at = list(Group = c("Control",
"Treat1",
"Treat2"))) |>
summary(),
"2" = prediction(Fit2,
at = list(Group = c("Control",
"Treat1",
"Treat2"))) |>
summary()),
.id = "Model") |>
rename("Group" = "at(Group)") |>
mutate(Model = if_else(Model == "1",
"w/o Covariates\n& w/ Weights",
"w/ Covariates\n& w/ Weights"),
Model = fct_inorder(Model)) |>
ggplot() +
geom_bar(aes(x = Group, y = Prediction), stat = "identity") +
geom_label(aes(x = Group, y = Prediction,
label = sprintf("%.3f", Prediction))) +
coord_cartesian(ylim = c(0, 0.25)) +
labs(x = "Groups", y = "Predicted Pr(Regret)") +
facet_wrap(~Model, ncol = 2) +
theme_bw(base_size = 12)5 Figure 2
Fit3 |>
prediction(at = list("Group" = c("Control", "Treat1", "Treat2"),
"Knowledge" = 0:3)) |>
summary() |>
rename("Group" = "at(Group)",
"Knowledge" = "at(Knowledge)") |>
mutate(Group = fct_inorder(Group)) |>
ggplot(aes(x = Knowledge, y = Prediction)) +
geom_line() +
geom_pointrange(aes(ymin = lower, ymax = upper)) +
labs(x = "(Low) ← Political Knowledge → (High)",
y = "Probability that respondents want \nto vote for another candidate (0:No ~ 1:Yes)") +
coord_cartesian(ylim = c(0, 0.4)) +
facet_wrap(~ Group) +
theme_bw()6 Figure 3
Fit3 |>
margins(variable = "Group",
at = list(Knowledge = 0:3)) |>
summary() |>
mutate(Sig = if_else(p < 0.05, "Significant", "Insignificant"),
factor = if_else(factor == "GroupTreat1",
"Treatment 1", "Treatment 2")) |>
ggplot() +
geom_hline(yintercept = 0) +
geom_pointrange(aes(x = Knowledge, y = AME, ymin = lower, ymax = upper,
color = Sig)) +
scale_y_continuous(breaks = c(-0.3, -0.2, -0.1, 0, 0.1, 0.2),
labels = c(-0.3, -0.2, -0.1, 0, 0.1, 0.2)) +
scale_color_manual(values = c("Significant" = "black",
"Insignificant" = "gray70")) +
coord_cartesian(ylim = c(-0.3, 0.2)) +
labs(x = "(Low) ← Political Knowledge → (High)",
y = "Average Marginal Effects",
color = "") +
facet_wrap(~factor, ncol = 2) +
theme_bw() +
theme(legend.position = "bottom")7 Figure 4
Fit4 |>
prediction(at = list("Group" = c("Control", "Treat1", "Treat2"),
"IntEffi" = 1:5)) |>
summary() |>
rename("Group" = "at(Group)",
"IntEffi" = "at(IntEffi)") |>
mutate(Group = fct_inorder(Group)) |>
ggplot(aes(x = IntEffi, y = Prediction)) +
geom_line() +
geom_pointrange(aes(ymin = lower, ymax = upper)) +
labs(x = "(Low) ← Internal Political Efficacy → (High)",
y = "Probability that respondents want \nto vote for another candidate (0:No ~ 1:Yes)") +
coord_cartesian(ylim = c(-0.1, 0.5)) +
facet_wrap(~ Group) +
theme_bw()8 Figure 5
Fit4 |>
margins(variable = "Group",
at = list(IntEffi = 1:5)) |>
summary() |>
mutate(Sig = if_else(p < 0.05, "Significant", "Insignificant"),
factor = if_else(factor == "GroupTreat1",
"Treatment 1", "Treatment 2")) |>
ggplot() +
geom_hline(yintercept = 0) +
geom_pointrange(aes(x = IntEffi, y = AME, ymin = lower, ymax = upper,
color = Sig)) +
scale_y_continuous(breaks = c(-0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5),
labels = c(-0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5)) +
scale_color_manual(values = c("Significant" = "black",
"Insignificant" = "gray70")) +
coord_cartesian(ylim = c(-0.2, 0.5)) +
labs(x = "(Low) ← Internal Political Efficacy → (High)",
y = "Average Marginal Effects",
color = "") +
facet_wrap(~factor, ncol = 2) +
theme_bw() +
theme(legend.position = "bottom")9 Appendix
9.1 Figure A.1
BlcChk <- df |>
select(-PID) |>
BalanceR(group = Group,
cov = c(Female:Voted,
`PID_PAN_PRD_MC` = PID1,
`PID_PRI_PVEM_PNA` = PID2,
`PID_MORENA_PT_PES` = PID3,
`PID_Etc` = PID0,
`External_Efficacy` = ExtEffi,
`Internal_Efficacy` = IntEffi,
`Trust_in_Media` = Trust_Media)) BlcChk |>
plot(vline = 25, simplify = TRUE, abs = TRUE)9.2 Table A.2
tab_a2_1 <- df |>
select(Regret, Female, Age, Educ, Income, Ideology, PID0:PID3,
Knowledge, Voted, ExtEffi, IntEffi, Trust_Media) |>
summarise(across(Regret:Trust_Media,
.fns = list("Mean" = mean,
"SD" = sd),
.names = "{.col}-{.fn}")) |>
pivot_longer(cols = everything(),
names_to = "x",
values_to = "y") |>
separate(col = x, into = c("Cov", "Stat"), sep = "-") |>
pivot_wider(names_from = Stat, values_from = y) |>
mutate(Stat = paste0(sprintf("%.3f", Mean),
"<br/>(", sprintf("%.3f", SD), ")")) |>
select(-Mean, -SD)
tab_a2_2 <- df |>
select(Group, Regret, Female, Age, Educ, Income, Ideology, PID0:PID3,
Knowledge, Voted, ExtEffi, IntEffi, Trust_Media) |>
group_by(Group) |>
summarise(across(Regret:Trust_Media,
.fns = list("Mean" = mean,
"SD" = sd),
.names = "{.col}-{.fn}"),
.groups = "drop") |>
pivot_longer(cols = -Group,
names_to = "x",
values_to = "y") |>
separate(col = x, into = c("Cov", "Stat"), sep = "-") |>
pivot_wider(names_from = Stat, values_from = y) |>
mutate(Stat = paste0(sprintf("%.3f", Mean),
"<br/>(", sprintf("%.3f", SD), ")")) |>
select(-Mean, -SD) |>
pivot_wider(names_from = Group, values_from = Stat)
left_join(tab_a2_1, tab_a2_2, by = "Cov") |>
mutate(Cov = recode(Cov,
"Regret" = "Regret (Outcome)",
"Educ" = "Education",
"PID0" = "PID: Others",
"PID1" = "PID: Anaya Coalition",
"PID2" = "PID: Meade Coalition",
"PID3" = "PID: López Obrador Coalition",
"ExtEffi" = "External Efficacy",
"IntEffi" = "Internal Efficacy",
"Trust_Media" = "Trust in Media")) |>
select("Variables" = Cov,
"Entire Sample" = Stat,
"Treatment 1" = Treat1,
"Treatment 2" = Treat2,
"Control" = Control) |>
gt() |>
fmt_markdown(columns = -Variables) |>
cols_align(columns = -Variables, align = "center")| Variables | Entire Sample | Treatment 1 | Treatment 2 | Control |
|---|---|---|---|---|
| Regret (Outcome) | 0.206 (0.404) |
0.203 (0.403) |
0.189 (0.392) |
0.224 (0.418) |
| Female | 0.451 (0.498) |
0.414 (0.494) |
0.471 (0.500) |
0.465 (0.500) |
| Age | 38.995 (12.668) |
40.520 (13.659) |
39.136 (12.432) |
37.493 (11.819) |
| Education | 4.606 (1.083) |
4.645 (1.100) |
4.604 (1.069) |
4.573 (1.082) |
| Income | 9.428 (5.245) |
9.629 (5.455) |
9.450 (5.109) |
9.227 (5.197) |
| Ideology | 5.414 (2.405) |
5.484 (2.308) |
5.404 (2.461) |
5.360 (2.442) |
| PID: Others | 0.505 (0.500) |
0.520 (0.501) |
0.500 (0.501) |
0.497 (0.501) |
| PID: Anaya Coalition | 0.084 (0.277) |
0.090 (0.287) |
0.079 (0.270) |
0.084 (0.278) |
| PID: Meade Coalition | 0.080 (0.272) |
0.062 (0.243) |
0.096 (0.296) |
0.080 (0.272) |
| PID: López Obrador Coalition | 0.331 (0.471) |
0.328 (0.470) |
0.325 (0.469) |
0.339 (0.474) |
| Knowledge | 1.337 (1.009) |
1.352 (0.971) |
1.336 (1.013) |
1.325 (1.041) |
| Voted | 0.865 (0.342) |
0.867 (0.340) |
0.875 (0.331) |
0.853 (0.355) |
| External Efficacy | 3.758 (1.209) |
3.660 (1.261) |
3.800 (1.165) |
3.804 (1.204) |
| Internal Efficacy | 4.022 (1.182) |
3.891 (1.257) |
4.043 (1.191) |
4.119 (1.095) |
| Trust in Media | 2.954 (1.190) |
3.023 (1.168) |
2.943 (1.214) |
2.902 (1.187) |
9.3 Table A.4
# w/ covariates / interaction with trust in media
Fit5 <- lm(Regret ~ Group * Trust_Media + Female + Age + Educ + Income +
Ideology + PID1 + PID2 + PID3 + Knowledge + Voted +
Trust_Media + ExtEffi + IntEffi,
data = df, weights = W)
# w/ covariates / interaction with ideology
Fit6 <- lm(Regret ~ Group * Ideology + Female + Age + Educ + Income +
Ideology + PID1 + PID2 + PID3 + Knowledge + Voted +
ExtEffi + IntEffi + Trust_Media,
data = df, weights = W)
# w/ covariates / interaction with strength of idelogy
Fit7 <- df |>
mutate(Strength = abs(5 - Ideology)) |>
lm(Regret ~ Group * Strength + Female + Age + Educ + Income +
Ideology + PID1 + PID2 + PID3 + Knowledge + Voted +
ExtEffi + IntEffi + Trust_Media,
data = _, weights = W)coef_vec <- c("GroupTreat1" = "Treatment 1",
"GroupTreat2" = "Treatment 2",
"Female" = "Female",
"Age" = "Age",
"Educ" = "Education",
"Income" = "Income",
"Ideology" = "Ideology",
"Strength" = "Strength of Ideology",
"PID1" = "PID: Anaya Coalition",
"PID2" = "PID: Meade Coalition",
"PID3" = "PID: López Obrador Coalition",
"Knowledge" = "Knowledge",
"Voted" = "Voted",
"ExtEffi" = "External Efficacy",
"IntEffi" = "Internal Efficacy",
"Trust_Media" = "Trust in Media",
"GroupTreat1:Knowledge" =
"Treatment 1 *<br/>Knowledge",
"GroupTreat2:Knowledge" =
"Treatment 2 *<br/>Knowledge",
"GroupTreat1:IntEffi" =
"Treatment1 *<br/>Internal Efficacy",
"GroupTreat2:IntEffi" =
"Treatment2 *<br/>Internal Efficacy",
"GroupTreat1:Trust_Media" =
"Treatment1 *<br/>Trust in the Media",
"GroupTreat2:Trust_Media" =
"Treatment2 *<br/>Trust in the Media",
"GroupTreat1:Ideology" =
"Treatment1 *<br/>Ideology",
"GroupTreat2:Ideology" =
"Treatment2 *<br/>Ideology",
"GroupTreat1:Strength" =
"Treatment1 *<br/>Strength of Ideology",
"GroupTreat2:Strength" =
"Treatment2 *<br/>Strength of Ideology",
"(Intercept)" = "Constant")
modelsummary(list("Model 1<br/>No Covariates" = Fit1,
"Model 2<br/>With Covariates" = Fit2,
"Model 3<br/>Knowledge" = Fit3,
"Model 4<br/>Internal Political Efficacy" = Fit4,
"Model 5<br/>Trust in Media" = Fit5,
"Model 6<br/>Ideology" = Fit6,
"Model 7<br/>Strength of Ideology" = Fit7),
escape = FALSE,
coef_map = coef_vec)| Model 1 No Covariates |
Model 2 With Covariates |
Model 3 Knowledge |
Model 4 Internal Political Efficacy |
Model 5 Trust in Media |
Model 6 Ideology |
Model 7 Strength of Ideology |
|
|---|---|---|---|---|---|---|---|
| Treatment 1 | -0.021 | -0.016 | -0.006 | 0.267 | -0.145 | -0.101 | -0.050 |
| (0.035) | (0.033) | (0.054) | (0.116) | (0.089) | (0.082) | (0.047) | |
| Treatment 2 | -0.045 | -0.027 | 0.070 | 0.363 | -0.117 | -0.071 | -0.035 |
| (0.034) | (0.032) | (0.052) | (0.118) | (0.082) | (0.077) | (0.046) | |
| Female | 0.004 | 0.007 | 0.005 | 0.005 | 0.005 | 0.005 | |
| (0.027) | (0.027) | (0.026) | (0.027) | (0.027) | (0.027) | ||
| Age | -0.001 | -0.001 | -0.001 | -0.001 | -0.001 | -0.001 | |
| (0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.001) | ||
| Education | 0.006 | 0.003 | 0.004 | 0.006 | 0.005 | 0.005 | |
| (0.014) | (0.014) | (0.014) | (0.014) | (0.014) | (0.014) | ||
| Income | 0.000 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 | |
| (0.003) | (0.003) | (0.003) | (0.003) | (0.003) | (0.003) | ||
| Ideology | 0.014 | 0.014 | 0.014 | 0.014 | 0.007 | 0.014 | |
| (0.006) | (0.006) | (0.006) | (0.006) | (0.010) | (0.006) | ||
| Strength of Ideology | -0.009 | ||||||
| (0.014) | |||||||
| PID: Anaya Coalition | 0.240 | 0.231 | 0.235 | 0.239 | 0.239 | 0.240 | |
| (0.049) | (0.049) | (0.049) | (0.049) | (0.049) | (0.049) | ||
| PID: Meade Coalition | 0.122 | 0.116 | 0.117 | 0.123 | 0.122 | 0.122 | |
| (0.052) | (0.052) | (0.051) | (0.052) | (0.052) | (0.052) | ||
| PID: López Obrador Coalition | 0.031 | 0.026 | 0.032 | 0.031 | 0.032 | 0.032 | |
| (0.033) | (0.033) | (0.032) | (0.033) | (0.033) | (0.033) | ||
| Knowledge | 0.020 | 0.049 | 0.020 | 0.020 | 0.020 | 0.020 | |
| (0.014) | (0.022) | (0.014) | (0.014) | (0.014) | (0.014) | ||
| Voted | -0.391 | -0.391 | -0.397 | -0.390 | -0.392 | -0.392 | |
| (0.040) | (0.040) | (0.040) | (0.040) | (0.040) | (0.040) | ||
| External Efficacy | 0.001 | 0.001 | -0.002 | 0.002 | 0.002 | 0.001 | |
| (0.012) | (0.012) | (0.012) | (0.012) | (0.012) | (0.012) | ||
| Internal Efficacy | -0.015 | -0.016 | 0.047 | -0.015 | -0.014 | -0.014 | |
| (0.013) | (0.013) | (0.022) | (0.013) | (0.013) | (0.013) | ||
| Trust in Media | 0.022 | 0.022 | 0.022 | -0.003 | 0.022 | 0.022 | |
| (0.012) | (0.012) | (0.012) | (0.019) | (0.012) | (0.012) | ||
| Treatment 1 * Knowledge |
-0.008 | ||||||
| (0.033) | |||||||
| Treatment 2 * Knowledge |
-0.073 | ||||||
| (0.031) | |||||||
| Treatment1 * Internal Efficacy |
-0.069 | ||||||
| (0.028) | |||||||
| Treatment2 * Internal Efficacy |
-0.095 | ||||||
| (0.028) | |||||||
| Treatment1 * Trust in the Media |
0.043 | ||||||
| (0.028) | |||||||
| Treatment2 * Trust in the Media |
0.031 | ||||||
| (0.026) | |||||||
| Treatment1 * Ideology |
0.016 | ||||||
| (0.014) | |||||||
| Treatment2 * Ideology |
0.008 | ||||||
| (0.013) | |||||||
| Treatment1 * Strength of Ideology |
0.020 | ||||||
| (0.019) | |||||||
| Treatment2 * Strength of Ideology |
0.004 | ||||||
| (0.019) | |||||||
| Constant | 0.230 | 0.410 | 0.388 | 0.180 | 0.477 | 0.448 | 0.426 |
| (0.024) | (0.095) | (0.097) | (0.117) | (0.104) | (0.102) | (0.097) | |
| Num.Obs. | 822 | 822 | 822 | 822 | 822 | 822 | 822 |
| R2 | 0.002 | 0.168 | 0.175 | 0.181 | 0.171 | 0.169 | 0.169 |
| R2 Adj. | -0.000 | 0.153 | 0.157 | 0.163 | 0.153 | 0.152 | 0.151 |
| AIC | 888.7 | 765.1 | 762.7 | 756.8 | 766.4 | 767.8 | 769.9 |
| BIC | 907.5 | 845.2 | 852.2 | 846.3 | 855.9 | 857.4 | 864.2 |
| Log.Lik. | -440.342 | -365.569 | -362.332 | -359.386 | -364.210 | -364.916 | -364.973 |
| F | 0.857 | 10.856 | 10.005 | 10.417 | 9.744 | 9.646 | 9.091 |
| RMSE | 0.40 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 |
10 Session Infomation
sessionInfo()R version 4.5.1 (2025-06-13)
Platform: aarch64-apple-darwin20
Running under: macOS Tahoe 26.0.1
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.1
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
time zone: Asia/Tokyo
tzcode source: internal
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] BalanceR_0.8.0 gt_1.1.0 summarytools_1.1.4 modelsummary_2.5.0
[5] prediction_0.3.18 margins_0.3.28 lubridate_1.9.4 forcats_1.0.1
[9] stringr_1.5.2 dplyr_1.1.4 purrr_1.1.0 readr_2.1.5
[13] tidyr_1.3.1 tibble_3.3.0 ggplot2_4.0.0 tidyverse_2.0.0
loaded via a namespace (and not attached):
[1] tidyselect_1.2.1 farver_2.1.2 S7_0.2.0
[4] fastmap_1.2.0 pacman_0.5.1 bayestestR_0.17.0
[7] digest_0.6.37 timechange_0.3.0 lifecycle_1.0.4
[10] magrittr_2.0.4 compiler_4.5.1 sass_0.4.10
[13] rlang_1.1.6 tools_4.5.1 yaml_2.3.10
[16] data.table_1.17.8 knitr_1.50 labeling_0.4.3
[19] htmlwidgets_1.6.4 bit_4.6.0 plyr_1.8.9
[22] xml2_1.4.0 RColorBrewer_1.1-3 tinytable_0.14.0
[25] withr_3.0.2 datawizard_1.3.0 grid_4.5.1
[28] future_1.67.0 globals_0.18.0 scales_1.4.0
[31] MASS_7.3-65 insight_1.4.2 cli_3.6.5
[34] rmarkdown_2.30 crayon_1.5.3 ragg_1.5.0
[37] generics_0.1.4 rstudioapi_0.17.1 future.apply_1.20.0
[40] performance_0.15.2 reshape2_1.4.4 tzdb_0.5.0
[43] commonmark_2.0.0 parameters_0.28.2 pander_0.6.6
[46] parallel_4.5.1 matrixStats_1.5.0 base64enc_0.1-3
[49] vctrs_0.6.5 jsonlite_2.0.0 litedown_0.7
[52] hms_1.1.4 rapportools_1.2 bit64_4.6.0-1
[55] archive_1.1.12 listenv_0.9.1 systemfonts_1.3.1
[58] magick_2.9.0 glue_1.8.0 parallelly_1.45.1
[61] codetools_0.2-20 stringi_1.8.7 gtable_0.3.6
[64] tables_0.9.31 lmtest_0.9-40 pillar_1.11.1
[67] htmltools_0.5.8.1 R6_2.6.1 tcltk_4.5.1
[70] textshaping_1.0.4 vroom_1.6.6 evaluate_1.0.5
[73] lattice_0.22-7 markdown_2.0 backports_1.5.0
[76] pryr_0.1.6 Rcpp_1.1.0 checkmate_2.3.3
[79] xfun_0.53 fs_1.6.6 zoo_1.8-14
[82] pkgconfig_2.0.3