library(tidyverse)
中心極限定理
set.seed(19861008)
正規分布の例
- \(\mu\)と\(\sigma\)
- 期待値は\(\mu\)
- 分散は\(\sigma^2\)であり、標準偏差は\(\sigma\)
- \(\mu = 10\)、\(\sigma = 5\)の正規分布( 図 1 )の場合、期待値は10、標準偏差は5
Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
ℹ Please use `linewidth` instead.
<- rep(NA, 10000)
vec1 for (i in 1:10000) {
<- mean(rnorm(1, mean = 10, sd = 5))
vec1[i]
}
%>%
vec1 enframe(name = "trial", value = "mean") %>%
ggplot() +
geom_histogram(aes(x = mean), color = "white") +
geom_vline(xintercept = 10, color = "red") +
coord_cartesian(xlim = c(-5, 25)) +
labs(x = "標本平均", y = "度数") +
theme_bw()
mean(vec1)
[1] 9.993612
sd(vec1)
[1] 5.052632
<- rep(NA, 10000)
vec2 for (i in 1:10000) {
<- mean(rnorm(10, mean = 10, sd = 5))
vec2[i]
}
%>%
vec2 enframe(name = "trial", value = "mean") %>%
ggplot() +
geom_histogram(aes(x = mean), color = "white") +
geom_vline(xintercept = 10, color = "red") +
coord_cartesian(xlim = c(-5, 25)) +
labs(x = "標本平均", y = "度数") +
theme_bw()
mean(vec2)
[1] 9.994122
sd(vec2)
[1] 1.584378
<- rep(NA, 10000)
vec3 for (i in 1:10000) {
<- mean(rnorm(100, mean = 10, sd = 5))
vec3[i]
}
%>%
vec3 enframe(name = "trial", value = "mean") %>%
ggplot() +
geom_histogram(aes(x = mean), color = "white") +
geom_vline(xintercept = 10, color = "red") +
coord_cartesian(xlim = c(-5, 25)) +
labs(x = "標本平均", y = "度数") +
theme_bw()
mean(vec3)
[1] 10.00129
sd(vec3)
[1] 0.4980742
一様分布の例
- 最小値(\(a\))と最大値(\(b\))
- 期待値は\(\frac{a + b}{2}\)
- 分散は\(\frac{(b - a)^2}{12}\)であり、標準偏差は\(\frac{b - a}{\sqrt{12}}\)
- \(a = 5\)、\(b = 15\)の一様分布( 図 2 )の場合、期待値は10、標準偏差は約2.89
<- rep(NA, 10000)
vec4 for (i in 1:10000) {
<- mean(runif(100, min = 5, max = 15))
vec4[i]
}
%>%
vec4 enframe(name = "trial", value = "mean") %>%
ggplot() +
geom_histogram(aes(x = mean), color = "white") +
geom_vline(xintercept = 10, color = "red") +
labs(x = "標本平均", y = "度数") +
theme_bw()
mean(vec4)
[1] 9.999566
sd(vec4)
[1] 0.2892989
ポアソン分布の例
- \(\lambda\)のみ
- 期待値は\(\lambda\)
- 分散は\(\lambda\)であり、標準偏差は\(\sqrt{\lambda}\)
- \(\lambda = 10\)のポアソン分布( 図 3 )の場合、期待値は10、標準偏差は約3.16
<- rep(NA, 10000)
vec5 for (i in 1:10000) {
<- mean(rpois(100, lambda = 10))
vec5[i]
}
%>%
vec5 enframe(name = "trial", value = "mean") %>%
ggplot() +
geom_histogram(aes(x = mean), color = "white") +
geom_vline(xintercept = 10, color = "red") +
labs(x = "標本平均", y = "度数") +
theme_bw()
mean(vec5)
[1] 10.00047
sd(vec5)
[1] 0.3174378
ガンマ分布の例
- 形状パラメーター(\(k\))と尺度パラメーター(\(\theta\))
- 期待値は\(k\theta\)
- 分散は\(k\theta^2\)であり、標準偏差は\(\sqrt{k}\theta\)
- \(k = 2\)、\(\theta = 5\)のガンマ分布( 図 4 )の場合、期待値は10、標準偏差は約7.07
<- rep(NA, 10000)
vec6 for (i in 1:10000) {
<- mean(rgamma(100, shape = 2, scale = 5))
vec6[i]
}
%>%
vec6 enframe(name = "trial", value = "mean") %>%
ggplot() +
geom_histogram(aes(x = mean), color = "white") +
geom_vline(xintercept = 10, color = "red") +
labs(x = "標本平均", y = "度数") +
theme_bw()
mean(vec6)
[1] 10.00008
sd(vec6)
[1] 0.7052151